

SensoLyte[®] Transglutaminase Activity Assay Kit *Colorimetric*

Revision number: 1.0	Last updated: 4/12/2016
Catalog #	AS-72244
Kit Size100 assays (96-well plate)	
• <i>Optimized Performance:</i> Optimized to detect activity of human transglutaminase enzyme.	

- *Enhanced Value:* Ample reagents to perform 100 assays in a 96-well format.
- Assured Reliability: Detailed protocol and references are provided.

Kit Components, Storage and Handling

Component	Description	Quantity
Component A	96 well plate, coated with Poly-D-Lysine, includes adhesive sealing film	1 plate
Component B	Wash/Assay buffer (10X)	25 mL
Component C	Biotin-peptide substrate	50 μL
Component D	Human transglutaminase-2, recombinant	2.5μg, 40 μL
Component E	Transglutaminase reaction buffer	15 mL
Component F	DTT, 1M	150 μL
Component G	Streptavidin HRP conjugate	25 μL
Component H	TMB substrate	10 mL
Component I	Stop solution	10 mL
Component J	Transglutaminase inhibitor	1mM, 25 μL

Other Materials Required (but not provided)

• <u>Colorimetric microplate reader</u>: Capable of detecting absorbance at 450nm.

Storage and Handling

- Store component D at -80°C
- Store components C, F, G, and J at -20°C
- Store components A, B, E, H, and I at 4°C
- Protect components G, H from light

Introduction

Transglutaminases (TGs) are Ca^{2+} and thiol-dependent enzymes that catalyze posttranslational modifications of proteins. These covalent reactions include formation of isopeptide linkages between the carboxamide groups of protein-bound glutamine residues and ε -amino groups of protein-bound lysine and polyamine residues, hydrolysis and esterification of glutamine residues .¹ Family of TGs includes at least nine members: TG 1-7, coagulation factor XIIIa, and the keratinocyte membrane bound TG form.¹⁻² TG has attracted considerable interest as a potential drug target. Its activity is thought to contribute to Alzheimer disease, Parkinson disease, Huntington disease, and supranuclear palsy.³⁻⁵

SensoLyte[®] Transglutaminase Activity Assay Kit provides a convenient assay for the high throughput screening of TG modulators and inhibitors. TG catalyzes covalent bond formation between a free amine group of poly-D-lysine, which is coated on the plate surface, and γ -carboxamide group of glutamine in biotin-TVQQEL peptide substrate. The reaction immobilizes biotin-conjugated peptide to the plate surface. The amount of immobilized biotin is determined using streptavidin-horseradish peroxidase (HRP) and TMB substrate. Colorimetric signal generated by HRP and TMB substrate is proportional to the activity of TG in a sample. Assay is performed in a convenient 96-well microplate format.

Purified TG or TG containing sample is mixed with Biotin-TVQQEL peptide substrate in the poly-Dlysine coated wells and incubated for 2 h at 37 °C. Streptavidin-HRP is added to the wells and reacts with cross-linked biotin substrate. Consequently TMB substrate reacts with HRP enzyme and produces colorimetric signal that can be read at 450nm. Color signal is proportional to the TG activity in a sample.

Protocol

<u>Note</u>: Keep transglutaminase enzyme (Component D) on ice. Warm all other kit components until thawed to room temperature before starting the experiments.

Protocol. Screening of TG modulators/inhibitors using purified or recombinant TG enzyme.

1. Prepare working solutions

1.1 <u>Prepare wash/assay buffer:</u> Dilute 10X Wash/Assay Buffer (Component B) to 1 X with distilled water according to the Table 1. Adjust volume if not using entire plate.

Table 1. Wash/Assay Buffer for one 96-well pl	ate (100 assays)
Components	Volume
10 X Wash/Assay buffer (Component B)	25 mL
Deionized water	225 mL
Total volume	250 mL

1.2 <u>Prepare reaction buffer:</u> Prepare fresh reaction buffer for each experiment according to the Table 2. Adjust volume if not using entire plate. Use this DTT-containing reaction buffer in all consecutive steps.

Table 2. Reaction buffer for one 96-well plate (100 assays)	
Components	Volume
Transglutaminase reaction buffer (Component E)	9.99 mL
1 M DTT (Component F)	100 µL
Total volume	10 mL

1.3 <u>Biotin-peptide substrate solution:</u> dilute biotin-peptide (Component C) 100-fold with reaction buffer from Step 1.2 according to the Table 3. Each assay will require 50µL of the biotin-peptide substrate. Adjust volume if not using entire plate.

	Table 3. Biotin-peptide substrate for on	ne 96-well plate (100 assays).
--	--	--------------------------------

o wen place (100 assay
Volume
50 µL
4.95 mL
5 mL

1.4 <u>Transglutaminase enzyme diluent</u>: dilute enzyme (Component D) 100-fold with reaction buffer from Step 1.2 according to the Table 4. Suggested volume of TG enzyme is 40µl/well. Adjust volume if not using entire plate.

Table 4. TG enzyme solution for one 96	6-well plate (100 assays).
--	----------------------------

Components	Volume
TG enzyme (Component D)	40 µL
Reaction buffer	3.96 mL
Total volume	4 mL

Note: Prepare enzyme diluent immediately before use. Do not vortex. Store diluent on ice.

- 1.5 <u>TG inhibitor solution</u>: dilute ZDON TG inhibitor (Component J) 20-fold with reaction buffer from Step 1.2. Each well will require 10μL of the inhibitor solution.
- 1.6 <u>Streptavidin-HRP solution</u>: Dilute Streptavidin-HRP conjugate solution (Component G) 500-fold with 1 X Wash/Assay buffer from Step 1.1 according to the Table 5. Prepare Streptavidin-HRP solution before use. Adjust volume if not using entire plate. Each well will require 100µL of the Streptavidin-HRP solution.

1	1 1
Components	Volume
Streptavidin-HRP (Component F)	20 µL
1 X Wash/Assay buffer	9.98 mL
Total volume	10 mL

Table 5. Streptavidin-HRP solution for one 96-well plate (100 assays).

2. Set up enzymatic reaction.

- 2.1 Add TG enzyme diluent and test compounds into 96-well plate (Component A). Suggested volume for TG enzyme diluent is 40 μL/well and test compound is 10 μL/well.
- 2.2 Establish the following controls at the same time:
 - > <u>Positive control</u> contains TG enzyme diluent without test compound.
 - Inhibitor control contains TG enzyme diluent and a known TG inhibitor (such as Component J).
 - Vehicle control contains TG enzyme diluent and vehicle used to deliver test compound (e.g. DMSO).
 - > <u>Test compound control</u> contains reaction buffer and test compound.
 - Substrate control contains reaction buffer only.

Note: Bring the total volume of all the controls to 50 μL for 96-well plate with reaction buffer.

3. Run assay.

- 3.1 Add 50 μ L of the prepared biotin-peptide substrate solution (from Step 1.3) into each well. Mix reagents completely by gently shaking plate for 30-60 sec.
- 3.2 Cover wells with adhesive sealing film and incubate plate at 37°C for 2 h.
- 3.3 Empty wells and wash 3 times with 200 µL/well of 1 X Wash/Assay buffer (Step 1.1.). Pat dry.

- 3.4 Add 100 μ L/well of prepared Streptavidin-HRP conjugate solution. Incubate plate for 30 minutes at room temp.
- 3.5 Empty wells and wash 4 times with 200 µL/well of 1 X Wash/Assay buffer (Step 1.1). Pat dry.
- 3.6 Add 100 μL/well of TMB substrate solution (Component H). Incubate plate for 5-10 minutes at room temp or until vivid blue gradient develops across the wells.
- 3.7 Add 100 μ L/well of Stop solution (Component I).

3.8 Read absorbance at 450nm.

4. Data analysis:

- The absorbance reading from the substrate control well is the background signal. This background reading has to be subtracted from the readings of the other wells.
- For endpoint reading:
 - > Plot data as Absorbance versus the concentration of test compounds.
 - A variety of data analyses can be done, e.g., determining inhibition %, EC_{50} , IC_{50} , etc.

References:

- 1. Ricotta M. et.al., World J Biol Chem 1(5), (2010): 181-187
- 2. Lesort M. et al., Progr Neurobiol 61, (2010): 439-463
- 3. Pietsch M. et al., Bioorg Med Chem Let 23, (2013): 6528-6543
- Verhaar R. et al., Neurochem Intl, (2011): 1-9
 Hartley D.M. et al, J of Biol Chem 283(24), (2008): 16790-16800