Peptides

Phytochelatin 2, PC2 - 1 mg

117,00
Check your price
  • Cat.Number : AS-60791
  • Availability :
    In stock

Select specification

Quantity

A glutathione-derived heavy metal-detoxifying peptide of higher plants consisting of 2 units of gGlu-Cys.

Specifications

Chemistry
Sequence one letter code
  • (?E-C)2-G
Sequence three letter code
  • H-?-Glu-Cys-?-Glu-Cys-Gly-OH
Molecular Formula
  • C18H29N5O10S2
Molecular Mass/ Weight
  • 539.6
Modification
Conjugation
  • Unconjugated
Quantity & Purity
Purity
  • ≥ 95%
Storage & stability
Form
  • Lyophilized
Activity
Biomarker Target
Research Area
Sub-category Research Area
Usage
  • Research use
Source
Source / Species
  • Plants

You may also be interested in the following product(s)

Tube of Phytochelatin 3 peptide, PC3

Phytochelatin 3, PC3 - 1 mg

Cat.Number : AS-60790
122,00
Tube of Phytochelatin 4 peptide, PC4

Phytochelatin 4, PC4 - 1 mg

Cat.Number : AS-60789
142,00
Tube of Phytochelatin 5 peptide, PC5

Phytochelatin 5, PC5 - 1 mg

Cat.Number : AS-61190
132,00

Citations

Characterization of a high affinity phytochelatin synthase from the Cd‐utilizing marine diatom Thalassiosira pseudonana.

J Phycol . 2012 Dec 26 ; 49(1) 32 | DOI : 10.1111/jpy.12022

  • T. Gupton‐Campolongo
  • et al

Characterisation of the decomposition behaviour of S-nitrosoglutathione and a new class of analogues: S-Nitrosophytochelatins.

Nitric Oxide . 2008 Nov 21 ; 20(3) 157 | DOI : 10.1016/j.niox.2008.11.001

  • L. Heikal
  • et al

Development of surface‐engineered yeast cells displaying phytochelatin synthase and their application to cadmium biosensors by the combined use of pyrene‐excimer fluorescence.

Biotechnol Progress . 2013 Aug 28 ; 29(5) 1197 | DOI : 10.1002/btpr.1789

  • H. Matsuura
  • et al

Phytochelatin–metal (loid) transport into vacuoles shows different substrate preferences in barley and Arabidopsis.

Plant Cell Environ . 2013 Dec 08 ; 37(5) 1192 | DOI : 10.1111/pce.12227

  • W-Y. Song
  • et al

Changes in phytochelatins and their biosynthetic intermediates in red spruce (Picea rubens Sarg.) cell suspension cultures under cadmium and zinc stress.

Plant Cell. Tiss. Organ Cult . 2007 Jan 01 ; 88 201 | DOI : 10.1007/s11240-006-9192-1

  • P. Thangavel
  • et al

Thiol compounds induction kinetics in marine phytoplankton during and after mercury exposure.

J Haz Mat . 2012 Mar 20 ; 217-218 271 | DOI : 10.1016/j.jhazmat.2012.03.024

  • Y. Wu
  • W-X. Wang

Complexation of Hg with phytochelatins is important for plant Hg tolerance.

Plant Cell Environ . 2011 Mar 15 ; 34(5) 778 | DOI : 10.1111/j.1365-3040.2011.02281.x

  • S. Carrasco-Gil
  • et al

Fission yeast HMT1 lowers seed cadmium through phytochelatin-dependent vacuolar sequestration in Arabidopsis.

Plant Physiol . 2012 Feb 07 ; 158(4) 1779 | DOI : 10.1104/pp.111.192872

  • J. Huang
  • et al

Exploiting plants for glutathione (GSH) production: uncoupling GSH synthesis from cellular controls results in unprecedented GSH accumulation.

Plant Biotechnol J . 2010 Mar 11 ; 8(7) 807 | DOI : 10.1111/j.1467-7652.2010.00510.x

  • V. Liedschulte
  • et al

Towards an understanding of the function of the phytochelatin synthase of Schistosoma mansoni.

PLoS Neglected Tropical Dis . 2013 Jan 31 ; 7(1) e2037 | DOI : 10.1371/journal.pntd.0002037

  • C. Rigouin
  • et al

Role of metal mixtures (Ca, Cu and Pb) on Cd bioaccumulation and phytochelatin production by Chlamydomonas reinhardtii.

Environ Pollution . 2013 May 03 ; 179 33 | DOI : 10.1016/j.envpol.2013.03.047

  • P. Abboud
  • KJ. Wilkinson

Reduced translocation of cadmium from roots is associated with increased production of phytochelatins and their precursors.

J Plant Physiol . 2012 Aug 22 ; 169(18) 1821 | DOI : 10.1016/j.jplph.2012.07.011

  • MF. Akhter
  • et al

Understanding of thiol-induced etching of luminescent gold nanoclusters.

RSC Adv . 2014 Jun 03 ; 4 26050 | DOI : 10.1039/C4RA02111H

  • C-Y. Ke
  • et al

The influence of pH on algal cell membrane permeability and its implications for the uptake of lipophilic metal complexes.

J Phycol . 2012 Mar 19 ; 48(2) 293 | DOI : 10.1111/j.1529-8817.2012.01126.x

  • M. Lavoie
  • et al

Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation.

Plant J. . 2008 Jan 16 ; 54(2) 249 | DOI : 10.1111/j.1365-313X.2008.03410.x

  • DG. Mendoza-Cozatl
  • et al

Predicting copper toxicity with its intracellular or subcellular concentration and the thiol synthesis in a marine diatom.

Environ. Sci. Technol. . 2007 Mar 01 ; 41(5) 1777 | DOI : 10.1021/es0613963

  • AJ. Miao
  • W-X. Wang

SEC ICP MS and CZE ICP MS investigation of medium and high molecular weight complexes formed by cadmium ions with phytochelatins.

Anal Bioanal Chem. . 2013 Mar 23 ; 405(14) 4667 | DOI : 10.1007/s00216-013-6868-3

  • A. Miszczak
  • et al

Cytokinin Determines Thiol-Mediated Arsenic Tolerance and Accumulation.

Plant Physiol. . 2016 Apr 18 ; 171(2) 1418 | DOI : 10.1104/pp.16.00372

  • T. Mohan
  • et al

Characterization of the phytochelatin synthase from the human parasitic nematode Ancylostoma ceylanicum.

Mol Biochem Parasitol . 2013 Jul 31 ; 191(1) | DOI : 10.1016/j.molbiopara.2013.07.003

  • C. Rigouin
  • et al

Selective extraction of thiol-containing peptides in seawater using Tween 20-capped gold nanoparticles followed by capillary electrophoresis with laser-induced fluorescence.

J Chromatogr A . 2011 Dec 06 ; 1220 162 | DOI : 10.1016/j.chroma.2011.11.057

  • C-C. Shen
  • et al

Characterization of Hg-phytochelatins complexes in vines (Vitis vinifera cv Malbec) as defense mechanism against metal stress.

BioMetals . 2014 Apr 09 ; 27(3) 591 | DOI : 10.1007/s10534-014-9732-9

  • AA. Spisso
  • et al

Cadmium in three marine phytoplankton: accumulation, subcellular fate and thiol induction.

Aquatic Toxicol . 2009 Aug 25 ; 95(5) 99 | DOI : 10.1016/j.aquatox.2009.08.006

  • M-J. Wang,
  • W-X. Wang

Responses of non-protein thiols to Cd exposure in Cd hyperaccumulator Arabis paniculata Franch.

Environ. Exp. Botany . 2009 May 01 ; 66(2) 242 | DOI : https://doi.org/10.1016/j.envexpbot.2009.03.003

  • X. Zeng
  • et al

Lead accumulation and synthesis of non-protein thiolic peptides in selected clones of Melilotus alba and Melilotus officinalis.

Environ Exp Botany . 2012 May 01 ; 78 18 | DOI : 10.1016/j.envexpbot.2011.12.016

  • R. Fernández
  • et al

Effects of Zn on plant tolerance and non-protein thiol accumulation in Zn hyperaccumulator Arabis paniculata Franch.

Environ Exp Botany . 2011 Feb 01 ; 70(2-3) 227 | DOI : 10.1016/j.envexpbot.2010.09.009

  • X-W. Zeng
  • et al

Identification of in vivo nitrosylated phytochelatins in Arabidopsis thaliana cells by liquid chromatography-direct electrospray-linear ion trap-mass spectrometry.

J Chromatog . 2010 Feb 12 ; 1217(25) 4120 | DOI : 10.1016/j.chroma.2010.02.013

  • L. Elviri
  • et al

Separation and quantification of monothiols and phytochelatins from a wide variety of cell cultures and tissues of trees and other plants using high performance liquid chromatography.

J. Chromatogr. A . 2008 Aug 13 ; 1207(1-2) 72 | DOI : 10.1016/j.chroma.2008.08.023

  • R. Minocha
  • et al

Effect of cadmium on selected physiological and morphological parameters in metallicolous and non-metallicolous populations of Echium vulgare L.

Ecotoxicol Environ Safety . 2014 Apr 15 ; 104 332 | DOI : 10.1016/j.ecoenv.2014.03.019

  • S. Dresler
  • et al

Analysis of Plant Pb Tolerance at Realistic Submicromolar Concentrations Demonstrates the Role of Phytochelatin Synthesis for Pb Detoxification

Environ Sci Technol . 2014 May 28 ; 48 7552 | DOI : 10.1021/es405234p

  • S. Fischer
  • et al

Analysis of phytochelatin complexes in the lead tolerant vetiver grass [Vetiveria zizanioides (L.)] using liquid chromatography and mass spectrometry.

Environ. Pollut. . 2009 Mar 17 ; 157(7) 2173 | DOI : 10.1016/j.envpol.2009.02.014

  • SS. Andra
  • et al

Controlled Nitric Oxide Delivery Platform Based on S-Nitrosothiol Conjugated Interpolymer Complexes for Diabetic Wound Healing.

Mol Pharmaceutics . 2009 Dec 23 ; 7(1) 254 | DOI : https://doi.org/10.1021/mp900237f

  • Y. Li
  • et al

S-Nitrosophytochelatins: Investigation of the Bioactivity of an Oligopeptide Nitric Oxide Delivery System

Biomacromol . 2011 Apr 11 ; 12(6) 2103 | DOI : 10.1021/bm200159h

  • L. Heikal
  • et al

Biochemical and physiological changes in jack bean under mycorrhizal symbiosis growing in soil with increasing Cu concentrations.

Environ Exp Botany . 2010 Apr 01 ; 68(2) 198 | DOI : 10.1016/j.envexpbot.2009.11.009

  • SAL. Andrade
  • et al

Determination and characterization of cysteine, glutathione and phytochelatins (PC 2–6) in Lolium perenne L. exposed to Cd stress under ambient and elevated carbon dioxide using HPLC with fluorescence detection.

J Chromatogr B Analyt Technol Biomed Life Sci. . 2011 Apr 22 ; 879(20) 1717 | DOI : 10.1016/j.jchromb.2011.04.016

  • XH. Ju
  • et al

Copper-induced synthesis of ascorbate, glutathione and phytochelatins in the marine alga Ulva compressa(Chlorophyta).

Plant Physiol Biochem . 2011 Oct 11 ; 51 102 | DOI : 10.1016/j.plaphy.2011.10.007

  • M. Mellado
  • et al